22 research outputs found

    Case study using Python in the teaching of numerical analysis

    Get PDF
    In this case study we describe the rationale, methodology and results of teaching Python as part of a third year optional Numerical Analysis module taken by undergraduate BSc Mathematics students at the University of the West of England, Bristol. In particular we focus on how we have used programming mini-tasks to engage and prepare students for using Python to complete a more significant piece of coursework, taken later in the course. These mini-tasks are marked electronically using the Dewis e-assessment system which provides the students with immediate and tailored feedback on their Python code

    Climate Change Influenced Female Population Sizes through Time across the Indonesian Archipelago

    Get PDF
    Lying at the crossroads of Asia and the Pacific world, the Indonesian archipelago hosts one of the world’s richest accumulations of cultural, linguistic, and genetic variation. While the role of human migration into and around the archipelago is now known in some detail, other aspects of Indonesia’s complex history are less understood. Here, we focus on population size changes from the first settlement of Indonesia nearly 50 kya up to the historic era. We reconstructed the past effective population sizes of Indonesian women using mitochondrial DNA sequences from 2,104 individuals in 55 village communities on four islands spanning the Indonesian archipelago (Bali, Flores, Sumba, and Timor). We found little evidence for large fluctuations in effective population size. Most communities grew slowly during the late Pleistocene, peaked 15–20 kya, and subsequently declined slowly into the Holocene. This unexpected pattern may reflect population declines caused by the flooding of lowland hunter/gatherer habitat during sea-level rises following the last glacial maximum

    Kinship structures create persistent channels for language transmission.

    Get PDF
    Languages are transmitted through channels created by kinship systems. Given sufficient time, these kinship channels can change the genetic and linguistic structure of populations. In traditional societies of eastern Indonesia, finely resolved cophylogenies of languages and genes reveal persistent movements between stable speech communities facilitated by kinship rules. When multiple languages are present in a region and postmarital residence rules encourage sustained directional movement between speech communities, then languages should be channeled along uniparental lines. We find strong evidence for this pattern in 982 individuals from 25 villages on two adjacent islands, where different kinship rules have been followed. Core groups of close relatives have stayed together for generations, while remaining in contact with, and marrying into, surrounding groups. Over time, these kinship systems shaped their gene and language phylogenies: Consistently following a postmarital residence rule turned social communities into speech communities

    Relaxed observance of traditional marriage rules allows social connectivity without loss of genetic diversity

    Get PDF
    © 2015 The Author. Marriage rules, the community prescriptions that dictate who an individual can or cannot marry, are extremely diverse and universally present in traditional societies. A major focus of research in the early decades of modern anthropology, marriage rules impose social and economic forces that help structure societies and forge connections between them. However, in those early anthropological studies, the biological benefits or disadvantages of marriage rules could not be determined. We revisit this question by applying a novel simulation framework and genome-wide data to explore the effects of Asymmetric Prescriptive Alliance, an elaborate set of marriage rules that has been a focus of research for many anthropologists. Simulations show that strict adherence to these marriage rules reduces genetic diversity on the autosomes, X chromosome and mitochondrial DNA, but relaxed compliance produces genetic diversity similar to random mating. Genome-wide data from the Indonesian community of Rindi, one of the early study populations for Asymmetric Prescriptive Alliance, are more consistent with relaxed compliance than strict adherence. We therefore suggest that, in practice, marriage rules are treated with sufficient flexibility to allow social connectivity without significant degradation of biological diversity

    Traffic Instabilities in Self-Organized Pedestrian Crowds

    Get PDF
    In human crowds as well as in many animal societies, local interactions among individuals often give rise to self-organized collective organizations that offer functional benefits to the group. For instance, flows of pedestrians moving in opposite directions spontaneously segregate into lanes of uniform walking directions. This phenomenon is often referred to as a smart collective pattern, as it increases the traffic efficiency with no need of external control. However, the functional benefits of this emergent organization have never been experimentally measured, and the underlying behavioral mechanisms are poorly understood. In this work, we have studied this phenomenon under controlled laboratory conditions. We found that the traffic segregation exhibits structural instabilities characterized by the alternation of organized and disorganized states, where the lifetime of well-organized clusters of pedestrians follow a stretched exponential relaxation process. Further analysis show that the inter-pedestrian variability of comfortable walking speeds is a key variable at the origin of the observed traffic perturbations. We show that the collective benefit of the emerging pattern is maximized when all pedestrians walk at the average speed of the group. In practice, however, local interactions between slow- and fast-walking pedestrians trigger global breakdowns of organization, which reduce the collective and the individual payoff provided by the traffic segregation. This work is a step ahead toward the understanding of traffic self-organization in crowds, which turns out to be modulated by complex behavioral mechanisms that do not always maximize the group's benefits. The quantitative understanding of crowd behaviors opens the way for designing bottom-up management strategies bound to promote the emergence of efficient collective behaviors in crowds.Comment: Article published in PLoS Computational biology. Freely available here: http://www.ploscompbiol.org/article/info%3Adoi%2F10.1371%2Fjournal.pcbi.100244

    SMARTPOP: Inferring the impact of social dynamics on genetic diversity through high speed simulations

    Get PDF
    Background: Social behavior has long been known to influence patterns of genetic diversity, but the effect of social processes on population genetics remains poorly quantified - partly due to limited community-level genetic sampling (which is increasingly being remedied), and partly to a lack of fast simulation software to jointly model genetic evolution and complex social behavior, such as marriage rules.Results: To fill this gap, we have developed SMARTPOP - a fast, forward-in-time genetic simulator - to facilitate large-scale statistical inference on interactions between social factors, such as mating systems, and population genetic diversity. By simultaneously modeling genetic inheritance and dynamic social processes at the level of the individual, SMARTPOP can simulate a wide range of genetic systems (autosomal, X-linked, Y chromosomal and mitochondrial DNA) under a range of mating systems and demographic models. Specifically designed to enable resource-intensive statistical inference tasks, such as Approximate Bayesian Computation, SMARTPOP has been coded in C++ and is heavily optimized for speed and reduced memory usage.Conclusion: SMARTPOP rapidly simulates population genetic data under a wide range of demographic scenarios and social behaviors, thus allowing quantitative analyses to address complex socio-ecological questions. © 2014 Guillot and Cox; licensee BioMed Central Ltd

    Complex genetic patterns in human arise from a simple range-expansion model over continental landmasses

    Get PDF
    © 2018 Kanitz et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Although it is generally accepted that geography is a major factor shaping human genetic differentiation, it is still disputed how much of this differentiation is a result of a simple process of isolation-by-distance, and if there are factors generating distinct clusters of genetic similarity. We address this question using a geographically explicit simulation framework coupled with an Approximate Bayesian Computation approach. Based on six simple summary statistics only, we estimated the most probable demographic parameters that shaped modern human evolution under an isolation by distance scenario, and found these were the following: an initial population in East Africa spread and grew from 4000 individuals to 5.7 million in about 132 000 years. Subsequent simulations with these estimates followed by cluster analyses produced results nearly identical to those obtained in real data. Thus, a simple diffusion model from East Africa explains a large portion of the genetic diversity patterns observed in modern humans. We argue that a model of isolation by distance along the continental landmasses might be the relevant null model to use when investigating selective effects in humans and probably many other species

    High Frequency Haplotypes are Expected Events, not Historical Figures [version 1; referees: 1 approved, 2 approved with reservations]

    No full text
    Cultural transmission of reproductive success states that successful men have more children and pass this raised fecundity to their offspring. Balaresque and colleagues found high frequency haplotypes in a Central Asian Y chromosome dataset, which they attribute to cultural transmission of reproductive success by prominent historical men, including Genghis Khan. Using coalescent simulation, we show that these high frequency haplotypes are consistent with a neutral model, where they commonly appear simply by chance. Hence, explanations invoking cultural transmission of reproductive success are statistically unnecessary

    Climate change influenced female population sizes through time across the Indonesian archipelago

    No full text
    Lying at the crossroads of Asia and the Pacific world, the Indonesian archipelago hosts one of the world's richest accumulations of cultural, linguistic, and genetic variation. While the role of human migration into and around the archipelago is now known in some detail, other aspects of Indonesia's complex history are less understood. Here, we focus on population size changes from the first settlement of Indonesia nearly 50 kya up to the historic era. We reconstructed the past effective population sizes of Indonesian women using mitochondrial DNA sequences from 2,104 individuals in 55 village communities on four islands spanning the Indonesian archipelago (Bali, Flores, Sumba, and Timor). We found little evidence for large fluctuations in effective population size. Most communities grew slowly during the late Pleistocene, peaked 15-20 kya, and subsequently declined slowly into the Holocene. This unexpected pattern may reflect population declines caused by the flooding of lowland hunter/gatherer habitat during sea-level rises following the last glacial maximum. © 2013 Wayne State University Press

    Comparison of the patterns of isolation by distance generated with the empirical and simulated data.

    No full text
    <p>In A, the patterns obtained for the observed data; in B, the result of one of the simulations based on the point estimates. Each point represents a population (top) or a pairwise population comparison (bottom); the dashed lines represent the linear regressions of these points (whose R<sup>2</sup> values are informed).</p
    corecore